On-line Human Motion Prediction with Multiple Gaussian Process Dynamical Models

Takamitsu Matsubara^{1,2}
Sang-Ho Hyon^{2,3}
Jun Morimoto^{2,3}

Graduate School of Information Science, NAIST¹ Department of Brain Robot Interface, ATR-CNS² ICORP-JST³

Human-robot interaction

- Importance of human-robot interaction in
 - Social interactions (Kanda et al. 2004)
 - Care of humans (Onishi et al. 2007)
 - Robot suits (Kawamoto et al. 2003)
 - Imitation learning (Nakaoka et al. 2005)

Our Goal

- Our goal
 - Assemble human-motion predictor (modeling)
 - Enables prediction in on-line manner (even learning is off-line)
 - Can also be used as motor primitive for imitation learning
- Difficulties in creating human behavior models
 - Nature of human motion such as:
 - Wide variety
 - High-dimensionality
 - Nonlinearity

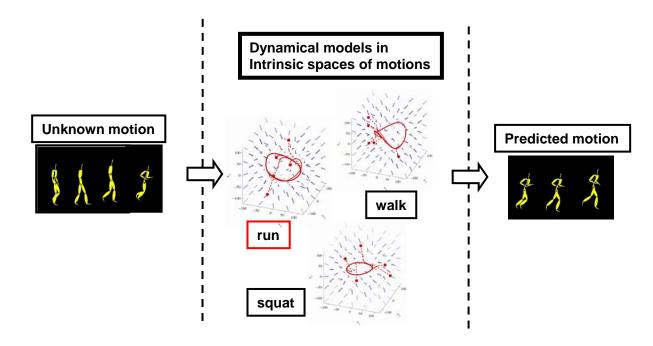
Related works

- Hidden Markov Models (HMMs)
 - Whole-body imitation between human and humanoid robot (Inamura et al. 2001)
 - Demonstrated learning and generation of whole-body motions
 - Requires discretization of poses (e.g. key pose)
 - Switching linear dynamical models (Pavlovic et al. 2000)
 - Potentially more powerful than simple HMMs due to its piece-wise continuous dynamics
 - Requires learning large number of parameters by an approximated manner

Learning for such complex parametric models with limited number of samples often suffers from over-fitting problems

Our approach

- Human-motion prediction:
 - Non-parametric modeling with Gaussian Processes
 - low-dimensional dynamics in latent space
 - Inverse-inference map (from observation to latent space)
 - Multiple models with on-line gating
 - Less suffering from over-fitting problem



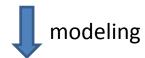
Gaussian Process for regression 1/3

Gaussian Process

- Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution (Rasmussen and Williams 2006)
- For regression...

Input:
$$\mathbf{x} = [x_1, x_2, \cdots, x_N]^T$$

Output: $\mathbf{y} = [y_1, y_2, \cdots, y_N]^T$



$$\mathbf{y} \sim \mathcal{N}\left(\mathbf{0}, K(\mathbf{x}, \mathbf{x})\right)$$

$$K(\mathbf{x},\mathbf{x}) = \begin{bmatrix} k(x_1,x_1) & \cdots & k(x_1,x_N) \\ & \ddots & \\ k(x_N,x_1) & & k(x_N,x_N) \end{bmatrix} k(x,x') = \gamma_1 \exp\left(-\frac{\gamma_2}{2}||x-x'||^2\right) + \gamma_3^{-1}\delta_{x,x'}$$

$$\bar{\gamma} = (\gamma_1,\gamma_2,\gamma_3)^T$$

 $\hat{D}_{x,x'}$

k(.,.): kernel function, $\bar{\gamma}$:hyper-parameters (defines a correlation between two outputs based on attached inputs)

Gaussian Process for regression 2/3

- Prediction on query point (test data) x*
 - Consider joint distribution

$$[\mathbf{y}, y_*]^T \sim \mathcal{N}\left(0, \begin{bmatrix} K(\mathbf{x}, \mathbf{x}) & k(\mathbf{x}, x_*) \\ k(x_*, \mathbf{x}) & k(x_*, x_*) \end{bmatrix}\right)$$

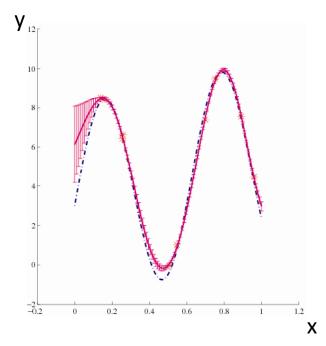
Bayes thorem:
$$p(y_*|\mathbf{y},\mathbf{x},x_*) = rac{p(\mathbf{y},y_*|\mathbf{x},x_*)}{p(y_*|x_*)}$$

Predictive distribution

$$y_* \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

$$\mu = \mathbf{k}_*^T \mathbf{K}^{-1} \mathbf{y}$$

$$\sigma^2 = k(x_*, x_*) - \mathbf{k}_*^T \mathbf{K}^{-1} \mathbf{k}_*$$

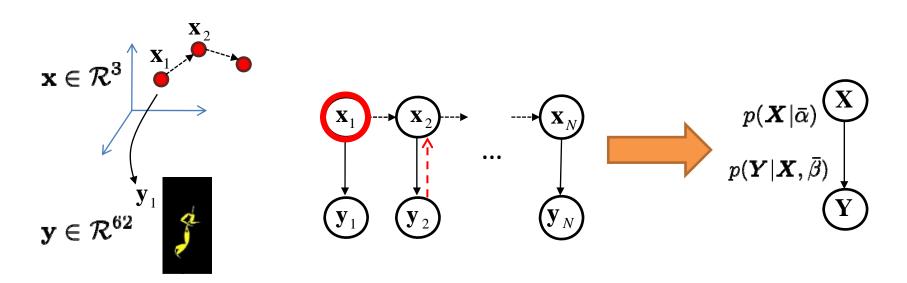


Gaussian Process for regression 3/3

- Why GP?
 - GP does not have "parameters" to be estimated
 - Interpreted as having been marginalized out
 - → less suffering from over-fitting problem
 - No need to select appropriate complexity unlike parametric models
 - GP still has hyper-parameters, but they can be estimated by optimization of marginal likelihood (e.g., Mackay 1999)

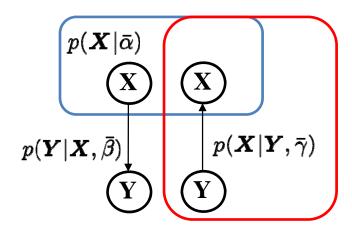
GPs for times series

- Guassian Process Dynamical Models (Wang et al. 2005)
 - Latent variable model for time series
 - Learning is to find MAP estimate of X, α and β
 - Predictions in both GPs can be made, but should be started from latent space...



Our approach

- Includes inverse inference map p(X|Y) as GP in advance and consider the three GPs simultaneously for learning X
 - Allows prediction in observation space through latent space dynamics
 - Idea (inverse-map, back-constraints) has been seen in GP-LVM (Shon et al. 2005, Lawrence et al. 2006)



Learning GPDM

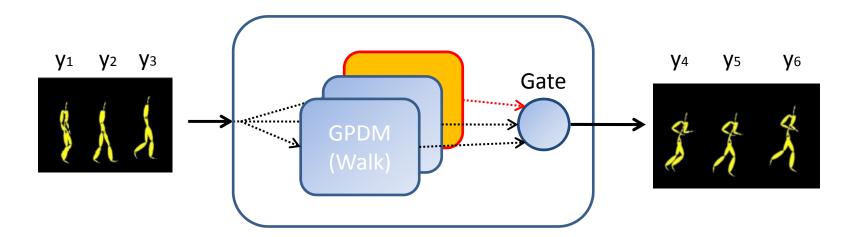
- MAP estimation (Lawrence 2004, Wang et al. 2005)
 - Finds latent variables X and hyper-parameters to minimize the following objective function:

$$\mathcal{L} = -\ln\left\{p(\mathbf{Y}|\mathbf{X}, \bar{\beta})p(\mathbf{X}|\bar{\alpha})p(\mathbf{X}|\mathbf{Y}, \bar{\gamma})p(\bar{\beta})p(\bar{\alpha})p(\bar{\alpha})\right\}$$
 where,
$$p(\mathbf{Y}|\mathbf{X}, \bar{\beta}) = \frac{1}{\sqrt{(2\pi)^{ND}|\mathbf{K}_y|^D}}\exp\left(-\frac{1}{2}\mathrm{Tr}(\mathbf{K}_y^{-1}\mathbf{Y}\mathbf{Y}^T)\right)$$
$$k_y(\mathbf{x}, \mathbf{x}') = \beta_1 \exp\left(-\frac{\beta_2}{2}|\mathbf{x} - \mathbf{x}'|^2\right) + \beta_3^{-1}\delta_{\mathbf{x}, \mathbf{x}'} \ \bar{\beta} = (\beta_1, \beta_2, \beta_3)^T$$

 Uses a conjugate gradient algorithm to find MAP estimate of X and hyper-parameters as in (Lawrence 2004)

For variety of human motions

- Simple modular structure
 - Prepare a variety of human behavior models as GPDM
 - On-line gating from a few observations
 - Best suited model predicts its future state

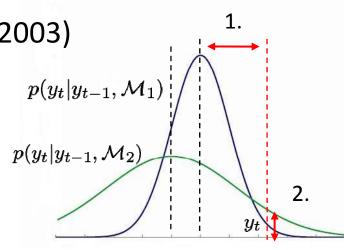


Criteria for on-line gating

- 1. Prediction error (squared error)
 - Easily achieved by using mean predictions of each GP
 - But, not effectively used variance information of predictive distributions
- 2. Approximated marginal likelihood
 - Criterion according to Bayesian Model selection

$$\hat{\mathcal{M}} = \arg\max_{i} p(\mathbf{y}_{t}|\mathbf{y}_{t-1}, \mathcal{M}_{i})$$

- Gaussian approximation (Girard et al. 2003)

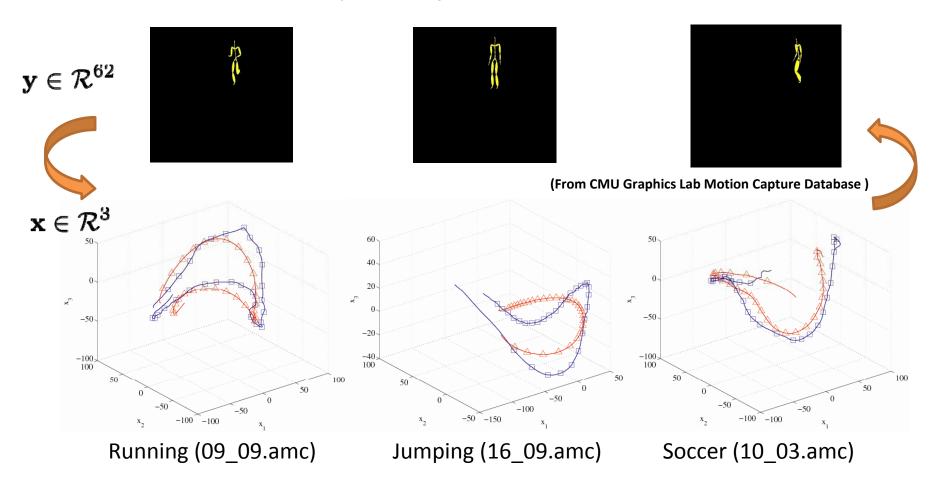


Modeling several human behaviors

- Modeling by GPDMs
 - Data: CMU Graphics lab motion capture data base
 - 62 dim (56 joints and 6 for root position and orientation)
 - Segmented and labeled by hand
 - Use running, jumping and soccer-kicking
 - Latent space
 - Assume a first-order Markov dynamics in 3dim latent space
 - Square Exponential kernel function for all GP mappings
 - Initialize latent variables X by PCA
 - Set hyper-parameters by trial and error

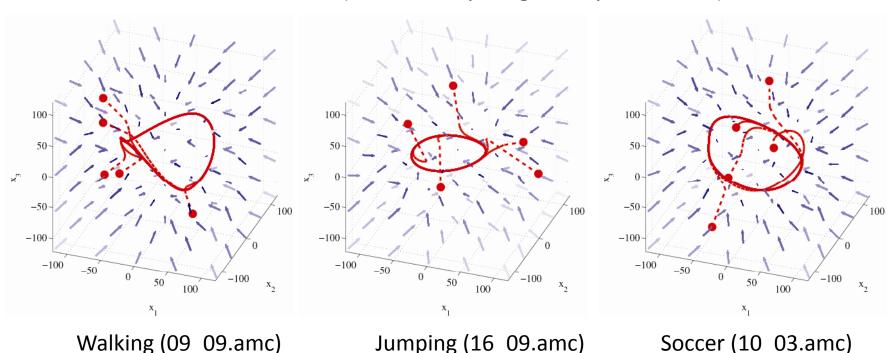
Learned GPDMs

- Learned latent trajectories
 - Smooth and compact trajectories are obtained



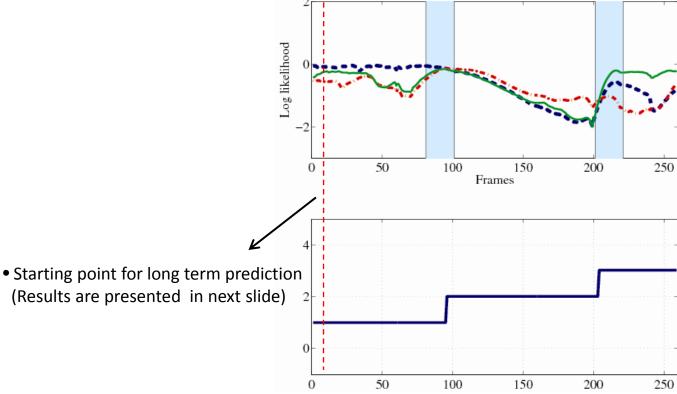
Analyze latent dynamics

- Acquired latent dynamics
 - Smooth attractor dynamics over wide range of latent space
 - Plot latent dynamical GP prediction at several query points
 - Blue arrow (size: mean, shade: variance)
 - Red-dashed line (obtained by long term predictions)



Human motion recognition by learned multiple GPDMs

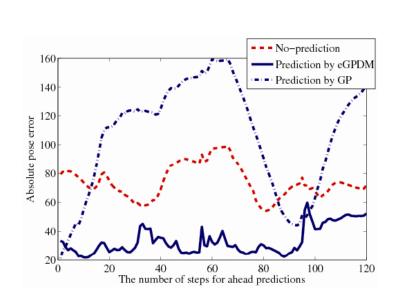
- Recognitions by predictive error
 - Smoothly synthesized human motion data
 - composed of three behaviors (test trial data of same subjects)
 - Running (09_08.amc), Jumping (13_13.amc), Soccer (10_03.amc)



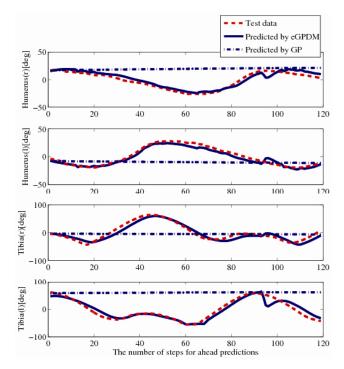
Simple predictive error effectively works for recognition

Long-term prediction for test data

- Long-term prediction from test data (running)
 - 1 sec prediction for whole body motion
 - Compare with a GP learns dynamics in observation space



Pose error at every frame

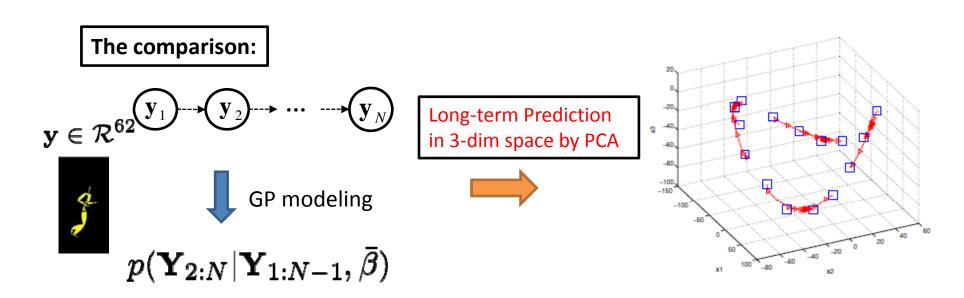


Principal joints in long-term prediction

The proposed method is effective for long term prediction

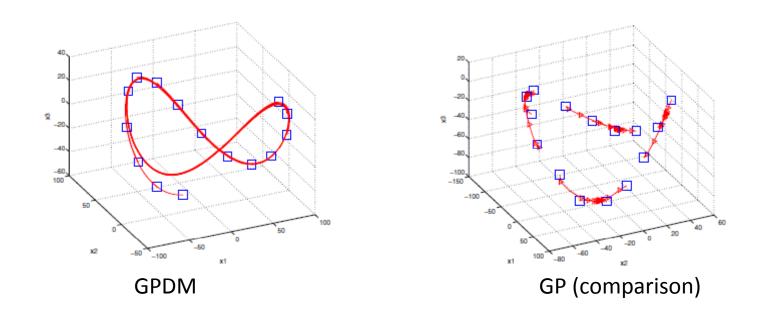
Effectiveness of low-dimensional latent space for smooth dynamics (1/2)

- What is advantage of considering latent space?
 - Comparison: learns dynamics directly in observation space by GP (running case), presents in 3dim space by PCA



Effectiveness of low-dimensional latent space for smooth dynamics (2/2)

- What is advantage of considering a latent space?
 - Compare both in latent space (projected by PCA)



Comparison could not make smooth dynamics due to its high-dimensic

Conclusions and future work

- Explored multiple GPDMs and on-line gating criteria for on-line human motion prediction
- Demonstrated its basic effectiveness for simple experiments
- Auto segmentation of the human behavior data
- Auto selection of representative behavior models in daily lives