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 Importance of human-robot interaction in
— Social interactions (Kanda et al. 2004)
— Care of humans (Onishi et al. 2007)
— Robot suits (Kawamoto et al. 2003)

— Imitation learning (Nakaoka et al. 2005)

HAL{Hybrid Assistive LiImb}(= 2L+ T
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e Qur goal
— Assemble human-motion predictor (modeling)

e Enables prediction in on-line manner (even learning is off-line)

e Can also be used as motor primitive for imitation learning

e Difficulties in creating human behavior models

— Nature of human motion such as:
 Wide variety
e High-dimensionality
* Nonlinearity
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e Hidden Markov Models (HMMs)
— Whole-body imitation between human and humanoid robot
(Inamura et al. 2001)
e Demonstrated learning and generation of whole-body motions
e Requires discretization of poses (e.g. key pose)

— Switching linear dynamical models (Pavlovic et al. 2000)

e Potentially more powerful than simple HMMs due to its piece-wise
continuous dynamics

* Requires learning large number of parameters by an approximated
manner

Learning for such complex parametric models with limited
number of samples often suffers from over-fitting problems



Our approach

e Human-motion prediction:

— Non-parametric modeling with Gaussian Processes
e low-dimensional dynamics in latent space
e Inverse-inference map (from observation to latent space)
e Multiple models with on-line gating

— Less suffering from over-fitting problem

Dynamical models in
Intrinsic spaces of motions

1
|
1
1
1
|
[
[
I Predicted motion
[

| Unknown motion |

TSR
~ Bt ¥
L1 1 # o ..'\‘. : < ™
T o CLT &3 i T S
i SPR.Y 4
. - e ’ . B
~_ L PR ke TR i
. - oy Ao B Wl
- o - \
e A =
" R SR T | .
. e
¥ 2 Yy

walk

run

squat




egression 175

11 - nlﬂf\f‘f\l‘l‘ ‘F
dll TrlIULcoo IV

3dUSS

)

e (Gaussian Process

— Definition: A Gaussian process is a collection of random variables,

any finite number of which have a joint Gaussian distribution
(Rasmussen and Williams 2006)

— For regression... y
T LN
Input: X = [-‘01,932, me st] . @
. ‘1' il ; ‘\_ “ "'E
Output: y = [y1,%2,** , UN] i : "‘-.
1 modeling '_,-"’ | ;" |
y ~N (0, K(x,x)) 2 ; '
baya) oo k@uen) | k(z,z") = y1exp (‘ﬁllx 2’|l )+~f3 A
K(x,x) = ~ T2 .
k(zx, z1) Kaewan) | 7= (71,72, 73) L ST
k(.,.): kernel function, 7 :hyper-parameters X

(defines a correlation between two outputs based on attached inputs)
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e Prediction on query point (test data) x«

— Consider joint distribution
T K(xa x) k(xa "B*)
[Ya y*] ~N (0, |: k(w*,x) k(w*,m*)

Bayes thorem:
1 ( _ P(Ya?l-.-lJE, 3«'...) Y.

X, L ==
py*lyi ’ *) p(y*|-’ﬂ*)

— Predictive distribution

2
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p=k Ky
02 = k(zx, ) — kI K™k,




e Why GP?
— GP does not have “parameters” to be estimated
* Interpreted as having been marginalized out

- less suffering from over-fitting problem
 No need to select appropriate complexity unlike parametric models

— GP still has hyper-parameters, but they can be estimated by
optimization of marginal likelihood (e.g., Mackay 1999)
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5Ps for t ries

e Guassian Process Dynamical Models (Wang et al. 2005)
— Latent variable model for time series
— Learning is to find MAP estimate of X, a and 3
— Predictions in both GPs can be made, but should be

started from latent space...
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e Includes inverse inference map p(X|Y) as GP in

advance and consider the three GPs simultaneously
for learning X

— Allows prediction in observation space through latent space dynamics

— ldea (inverse-map, back-constraints) has been seen in GP-LVM (Shon et
al. 2005, Lawrence et al. 2006)

p(x1a) [ )
p(Y|X, B) p(X|Y,%)

N )
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e MAP estimation (Lawrence 2004, Wang et al. 2005 )

— Finds latent variables X and hyper-parameters to minimize
the following objective function:
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£ =-In{p(Y|X, B)p(X|a)p(X|Y, 7)p(8)p(a@)p(

1 1o o
N COLLL exp (_ETI(Ky vy ))

ky(x’ X’) = 161 eXp (_%Ix - x’|2) +)83_15x,x' B = (1613 ﬁ2$ )83)T

where, p(Y|X,3) =

— Uses a conjugate gradient algorithm to find MAP estimate
of X and hyper-parameters as in (Lawrence 2004)
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e Simple modular structure
— Prepare a variety of human behavior models as GPDM
— On-line gating from a few observations
— Best suited model predicts its future state
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Prediction error (squared error)

— Easily achieved by using mean predictions of each GP

— But, not effectively used variance information of predictive
distributions

Approximated marginal likelihood

— Criterion according to Bayesian Model selection

M = arg max p(y:|y:—1, M;)
— Gaussian approxir;ation (Girard et al. 2003)

p(yt|lyt—1, M1) i

p(ye|ye—1, Ma2)
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* Modeling by GPDMs

— Data: CMU Graphics lab motion capture data base
e 62 dim (56 joints and 6 for root position and orientation)
* Segmented and labeled by hand
e Use running, jumping and soccer-kicking

— Latent space
e Assume a first-order Markov dynamics in 3dim latent space
e Square Exponential kernel function for all GP mappings
* |nitialize latent variables X by PCA
e Set hyper-parameters by trial and error
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 Learned latent trajectories

— Smooth and compact trajectories are obtained
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 Acquired latent dynamics
— Smooth attractor dynamics over wide range of latent space
— Plot latent dynamical GP prediction at several query points

e Blue arrow (size: mean, shade: variance)
e Red-dashed line (obtained by long term predictions)
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Human motion recognition by
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learned mUItIple GPDMs
e Recognitions by predictive error

— Smoothly synthesized human motion data

e composed of three behaviors (test trial data of same subjects)
— Running (09_08.amc), Jumping (13_13.amc), Soccer (10_03.amc)
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Log likelihood
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* Starting point for long term prediction
(Results are presented in next slide) 2f
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Simple predictive error effectively works for recognition



Long-term prediction for test data

 Long-term prediction from test data (running)

— 1 sec prediction for whole body motion
— Compare with a GP learns dynamics in observation space
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The number of steps for ahead predictions

Pose error at every frame

The proposed method is
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Principal joints in long-term prediction

effective for long term prediction



Effectiveness of low-dimensional
latent space for smooth dynamics(1/2)

 What is advantage of considering latent space?

— Comparison: learns dynamics directly in observation space
by GP (running case), presents in 3dim space by PCA

The comparison:

y € R62@'“@---> @

I 1 GP modeling

p(Yo.n|Y1.N-1, 3

Long-term Prediction
in 3-dim space by PCA
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Effectiveness of low-dimensional
latent space for smooth dynamics(2/2)

 What is advantage of considering a latent space?
— Compare both in latent space (projected by PCA)
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GPDM GP (comparlson

Comparison could not make smooth dynamics
due to its high—-dimensic
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Explored multiple GPDMs and on-line gating criteria
for on-line human motion prediction

Demonstrated its basic effectiveness for simple
experiments

Auto segmentation of the human behavior data
Auto selection of representative behavior models in daily lives



